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Crestal bone resorption (dieback) to
the first coronal implant thread of a two-
piece dental implant is commonly
observed after attachment of the abut-
ment. It is recognized that the func-
tionally loaded dental implant averages
approximately 1.0 mm of bone loss in
the first year, and at least 0.10 mm per
year in function afterward.1–4 The pos-
sible causative factors are speculated to
be inadvertent surgical trauma, occlusal
overload resulting in high stress at the
implant-bone interface, a microgap
leading to bacterial infiltration at the
implant-abutment junction, and the
resulting apical establishment of the
biologic width to accommodate the
supracrestal connective tissue. The
problems associated with continual 
crestal bone resorption include the for-
mation of an uncleansable peri-implant
sulcus with the presence of inflamma-
tion, recession leading to loss of inter-
proximal soft tissue, and the potential
for bone loss that may compromise the
stability of the implant.  

The peri-implant connective tis-
sue that is established following
implant surgery with a Laser-Lok
implant (BioLok International, now
manufactured by Biohorizons) acts as
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an effective barrier to the apical migra-
tion of epithelial attachment.5 This
translates into the protection of the
bone level by 1 mm of connective tis-
sue. In comparison, the natural tooth
has connective tissue attached via
Sharpey fibers to the cementum sur-
face in a perpendicular plane. Previous
observations with osseointegrated
implants describe these collagen fibers
as being parallel to the implant.6–14 A
physical attachment of the connective
tissue fiber to the Laser-Lok microchan-
nels on the implant collar has been
clearly demonstrated using human his-
tology, polarized light microscopy, and
scanning electron microscopy.5 The
use of Laser-Lok microchannels
resulted in a perpendicular, functional
physical attachment that helped to sta-
bilize the bone level and diminish the
loss of crestal bone.5,15

The goal of this retrospective ra -
diographic study was to review the
efficacy of the Laser-Lok collar to pre-
serve the crestal bone level in a wide
variety of situations encountered in a
private practice setting. Radiographic
evaluation was deemed to be suit-
able because crestal bone level
changes observed in standardized
periapical radiographs are highly
accurate when compared to nonde-
calcified histologies.16

Method and materials

This study was conducted in a single
private office on 41 consecutively
treated patients (mean age, 62 years)
who received 50 Laser-Lok dental
implants between February 2005 and
January 2007. Thirty-seven implants

were placed in the maxilla and 13 were
placed in the mandible (35 internal-
connection and 15 external-hex). The
appropriate medical and dental histo-
ries were reviewed, clinical and radio -
graphic examinations were conducted,
and each patient signed an informed
consent form. Patients selected were
those typically seen by referral in a peri-
odontal private practice without sig-
nificant medical history or medications
that would preclude them from most
periodontal surgical procedures. Pa -
tients were prepared for surgery in
accordance with accepted dental
practice guidelines, and implant surg-
eries were performed on an outpa-
tient basis. Full-thickness flaps were
elevated with a horizontal incision to
reveal the bone surface after adminis-
tration of local anesthetics (2% lido-
caine with 1:100,000 epinephrine).
Vertical incisions were used as neces-
sary for visibility. Implant osteotomies
were prepared according to the man-
ufacturer’s guidelines, and the implants
were placed. Primary flap closure was
obtained with resorbable and nonre-
sorbable sutures. Postoperative digital
periapical radiographs were made
using a paralleling technique to record
the exact bone level at baseline
(Gendex Dental Systems, KaVo). Pa -
tients were instructed not to brush or
floss at the surgical sites until suture
removal at 14 days postoperative.
They were also instructed to rinse with
0.12% chlorhexidine mouthwash daily
for 1 week and were prescribed appro-
priate antibiotics and analgesics.  

Routine postoperative evaluations
were conducted until the time of stage-
two surgery and abutment connection.
Cover screws were replaced with heal-

ing abutments using a punch tech-
nique if adequate keratinized gingiva
was present around the facial aspect of
the implant. In sites with an inadequate
zone of gingiva, a full-thickness muco -
periosteal flap was elevated, healing
abutments were placed, and the flap
was repositioned apically to create a
wider zone of gingiva. A postoperative
digital periapical radiograph was then
taken. Mean time from the initial place-
ment surgery to healing abutment con-
nection was 4.8 months.

Postrestoration radiographs were
taken shortly after restoration and then
at 1 and approximately 2 and 3 years.
These digital radiographs were
imported into Photoshop CS3 using
the Analysis Toolkit (Adobe). Three
measurements were obtained for each
implant: implant length at midaxis and
mesial and distal crestal perpendicular
bone lengths to the apical end of the
implant (used as a reference point). All
measurements were then exported
into an Excel (Microsoft 2007) spread-
sheet for analysis. Mesial and distal
crestal perpendicular bone lengths
were standardized with the known
midaxis implant length. Mesial and dis-
tal crestal bone lengths were then aver-
aged and the mean bone level change
was computed. Each implant site was
serialized and coded for objective and
unbiased measurements.

Results

Fifty implants were placed in a wide
variety of clinical situations normally
encountered in a periodontal office.
Implants were placed in edentulous
sites, previously bone-grafted sites,
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and immediately after extraction (Figs
1 to 3). Thirty-nine of 50 implants were
placed in the anterior region (78%),
and the remaining 11 were placed in
molar sites (22%) (Figs 4 and 5). One

implant failed as a result of an
endodontic abscess on an adjacent
tooth; thus the total number of
implants eligible for radiographic
analysis was 49.
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Fig 1a Initial placement of three Laser-Lok
implants in a 75-year-old woman with a
strong bruxism habit.

Fig 1b Healing abutments placed 5
months after surgery.

Fig 1c Radiograph of restored Laser-Lok
implants in function for 2 years.

Fig 2a Initial radiograph of a defect around
the mandibular left central incisor.  The site
showed complete loss of the facial plate and
the implant was placed using a bone graft
and resorbable barrier membrane.

Fig 2b Healing abutment placed 
5 months following implant placement with
simultaneous bone grafting.

Figs 2c (above) and 2d (below) Two-year
(c) radiograph and (d) clinical photograph of
the restored tooth. Note the stable crestal
bone levels.
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The radiographic crestal bone lev-
els were expressed in millimeters from
the top of the implant platform to the
first bone-to-implant contact. Forty-
one of the original 49 implants had
postrestoration radio graphs taken at 2
years (Figs 1, 2, and 4), and 30 of those
implants had postrestoration radi-
ographs taken at 3 years (Figs 3 and 5).

A small number of implants were able
to be followed radiographically for
even longer periods of time (Fig 3f).
The mean crestal bone level change
for the 2-year postrestoration group
was –0.44 ± 0.10 mm, while the mean
crestal bone level change for the 3-
year postrestoration group was –0.46
± 0.12 mm (Fig 6). There was no sta-

tistically significant difference in the
mean crestal bone level change
between these two groups (P > .05). In
addition, data from implants placed in
edentulous sites, previously grafted
sites, or those placed immediately did
not show statistically significant differ-
ences among them and therefore, all
implants were analyzed collectively. 
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Fig 3a (left) Initial radiograph of a failed
fixed partial denture in the maxillary left
posterior region. A computed tomography
scan revealed a ridge width of 4 to 5 mm,
requiring a ridge-splitting technique at the
time of implant placement.

Fig 3b (right) Healing abutments placed
3.5 months following ridge splitting and
implant placement.

Figs 3c to 3f Digital radiographs taken at
(top left) 1 year, (top right) 2 years, (bottom
left) 3 years, and (bottom right) 4 years post -
restoration showing crestal bone stability.
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Discussion

Preservation of the hard and soft tis-
sues adjacent to an implant is partly
dependent upon the implant’s physi-
cal surface characteristics to enhance
cell and tissue attachment. Several
modifications of surface properties,
such as topography, structure, chem-

Research using human mesenchymal
stem cells on roughened titanium sur-
faces treated to provide surface nano -
topography demonstrated marked
osteoinduction and osteogenesis of
adherent cells.21 Collectively, these
studies demonstrate the need for sur-
faces with both micro- and nanoto-
pography. Surface microchannels with

istry, surface charge, and wettability,
have been investigated in an effort to
improve marginal soft and hard tissue
integration with different implant sur-
faces.15,17–20 Surface microtopography
allows different cell types to demon-
strate varying degrees of adhesion,
proliferation, organization, and differ-
entiation to different topographies.18,19
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Fig 4c Digital radiograph of Laser-Lok 
5-mm-wide implant at 2 years post -
restoration.

Fig 4b Healing abutment at 6 months
after implant placement and bone grafting
of the socket.

Fig 4a Initial radiograph of a hopeless
maxillary right central incisor. 

Fig 5a Initial placement of a 5-mm Laser-
Lok implant in site grafted 5 months earlier
following extraction of the fractured tooth.

Fig 5b A healing abutment was placed 
3 months after implant placement.

Fig 5c Three-year follow-up of the Laser-
Lok implant. Note the crestal bone stability
and increased crestal bone density adjacent
to the microtextured collar.
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a specific shape and depth have
demonstrated specific control of
osteoblastic and fibroblastic cell func-
tion22–25 since they simultaneously
limit epithelial cell downgrowth and
proliferation.5,20

The relative success of a dental
implant can be directly correlated to the
level of bone and connective tissue
attached to the implant. Implant surface
micro- and nanotopography has been
identified as a key factor in influencing
the attachment and differentiation of
many cell types, including gingival
fibroblasts, which are responsible 
for the production of the collagen-rich
connective tissue surrounding dental
implants. The functional orientation of
the connective tissue collagen fibers
inserted into the neck of the implant
has been reported by some investiga-
tors, but the orientation appeared to
be influenced by the quality of the
mucosa.7,26,27 The fibers tended to be

parallel in alveolar mucosa and orga-
nized more perpendicularly in kera-
tinized mucosa.28 Preclinical and clinical
evaluations have routinely demon-
strated connective tissue fibers parallel
to the implant surface.6,8,13,14,17 A
recently published study compared the
histologic orientation of collagen fibers
around smooth metal implant necks to
that around zirconia-coated surfaces.
Regardless of the implant material, 
collagen fiber orientation was predom-
inantly parallel or parallel-oblique.29

Stress concentrations around
implants in crestal bone are based
on implant design and its ability to
attach to the adjacent bone.30 A
recent finite element analysis engi-
neering study revealed that the Laser-
Lok design demonstrated reduced
crestal bone stress, in particular, the
stress associated with off-axis loading
that usually occurs in the collar
region.31 An animal study comparing
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Fig 6 Mean crestal bone level change
during two different time frames.

© 2009 BY QUINTESSENCE PUBLISHING CO, INC. PRINTING OF THIS DOCUMENT IS RESTRICTED TO PERSONAL USE ONLY. NO PART OF THIS ARTICLE  
MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM WITHOUT WRITTEN PERMISSION FROM THE PUBLISHER. 



the laser microtextured collar to a
machined collar demonstrated that
the machined collar experienced
greater downgrowth of epithelium 
and more osteoclastic activity with
increased saucerization.20 In addition,
there was a closer adaptation of the
bone to the laser microtextured collar
as well as evidence of limited epithe-
lial downgrowth and the presence of
connective  tissue attachment to the
laser microtextured collar. Thus, the
results of that study supported the
hypothesis that a laser microtextured
collar can limit epithelial downgrowth,
improve the attachment of soft tissue
and bone, and simulate the biologic
width that is seen in the natural denti-
tion. Nevins et al5 have also shown,
through scanning electron microscopy
and human histology analysis, that
Laser-Lok can produce a connective
tissue attachment around the laser-
treated collar portion of the implants.
Twelve-micron grooves showed the
best potential for inhibition of fibrous
tissue growth relative to bone cell
growth, and 8-µm grooves showed
the most effective inhibition of
epithelial cell migration across the
grooves.20,24,25 This is similar to results
of an in vitro study conducted by Boyan
and Schwartz,32 suggesting specific
surface microstructure spacing and
height ranges for optimal cell response.
Other dental implant systems have
advertised groove-textured surfaces at
the coronal aspect of the implant.
However, these grooves are substan-
tially larger (200 to 250 µm) and on a
cellular level, represent surfaces that
do not modulate osteoblastic mor-
phology as effectively as the Laser-Lok
8- and 12-µm microchannels.33 

In this retrospective radiographic
analysis, conducted in a private prac-
tice setting, 49 Laser-Lok dental
implants were radiographically evalu-
ated for up to 3 years postrestoration
to determine the change in crestal
bone levels relative to the top of the
implant platform. The results demon-
strated a mean loss of 0.44 ± 0.10 mm
and 0.46 ± 0.12 mm of crestal bone
height from the initial surgery to 2 and
3 years postrestoration, respectively.
An earlier unpublished pilot study car-
ried out in 2000 by Shapoff in six
patients using a Laser-Lok microchan-
nel collar on a 1-mm external-hex
BioLok implant demonstrated very sta-
ble crestal bone leels, which was main-
tained for 8 years.  

Limitations of the current radio -
graphic study include its retrospective
nature and use of nonstandardized
radiographs. The results, however, are
consistent with a prospective con-
trolled study by Pecora et al.15 In that
study, the Laser-Lok implant reduced
crestal bone loss to approximately 
0.6 mm at 3 years, compared to a
machined-collar implant, which showed
1.9 mm of crestal bone loss. In addi-
tion, the Laser-Lok implant was com-
parable to the machined-collar implant
in the safety endpoints of the Plaque
Index and Sulcular Bleeding Index.

There have been other attempts
to minimize the expected crestal bone
loss of 1.5 to 2.0 mm, such as using
one-piece implants or a platform-
switching concept.34–38 For example,
Cappiello et al36 evaluated bone loss
around 75 two-piece implants that were
restored according to the platform-
switching protocol. Their 12-month
radiographic analysis revealed vertical
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bone loss between 0.6 and 1.2 mm
(mean, 0.95 ± 0.32 mm). A recently
published 5-year prospective study on
platform-switched implants demon-
strated 0.6 mm of crestal bone loss
from the apical margin of the smooth
metal collar, compared to 0.9 mm for
the matching diameter abutment.39

It should be noted that this study used
an external hex implant with a minimal
collar dimension, and in many cases
the implants were placed 1 mm sub-
crestally. The results ob tained were
comparable to the results of this study. 

Conclusion

The presence of the Laser-Lok surface
resulted in a stable osseous crest with-
out bone loss to the first thread. The
Laser-Lok implants showed less crestal
bone loss at 3 years postrestoration
than the commonly accepted 1.5 to
2.0 mm. This is probably the result of
stable bone attachment, fibrous con-
nective tissue attachment, and epithe-
lial attachment to the implant collar,
resulting in a stable soft tissue seal
that protected the crestal bone.
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